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Abstract

We propose a method of offline reinforcement learning (RL) featuring the per-
formance guarantee without any assumptions on the data support. Under such
conditions, estimating or optimizing the conventional performance metric is gener-
ally infeasible due to the distributional discrepancy between data and target policy
distributions. To address this issue, we employ a worst-case policy value as a new
metric and constructively show that the sample complexity bound of O(ϵ−2) is
attainable without any data-support conditions, where ϵ > 0 is the policy subopti-
mality in the new metric. Moreover, as the new metric generalizes the conventional
one, the algorithm can address standard offline RL tasks without modification. In
this context, our sample complexity bound can be seen as a strict improvement on
the previous bounds under the single-policy concentrability and the single-policy
realizability.

1 Introduction

Offline reinforcement learning (RL) (Levine et al., 2020; Prudencio et al., 2023) is a framework for
learning decision-making policies while constrained to a fixed batch of data, preventing the learner
from acquiring new information about the environment during training.

The primary challenges of offline RL are thus originated from the discrepancy between the state-
action distribution of the batch data µ(s)β(a|s) and the visitation distribution of the trained policy
dπ(s)π(a|s). Most of the previous studies have avoided directly dealing with this discrepancy by
posing the assumption known as concentrability (Munos and Szepesvári, 2008; Antos et al., 2008;
Chen and Jiang, 2019; Xie et al., 2022). Roughly speaking, the condition asserts that the ratio between
these two distributions dππ/µβ is well-defined and uniformly bounded over the entire state-action
space. This, in turn, constrains the trained policy π to strictly stay inside the state space covered by
the data support.

However, concetrability may be impractical in real-world applications for several reasons. First,
one often ends up with a poor coverage of the state-action space when exhaustive data collection
is expensive or practically infeasible as in the domains of autonomous driving (Fang et al., 2022),
healthcare (Yu et al., 2021) and public policy-making (Abe et al., 2010). Moreover, the precise shape
of the partial coverage is unknown if the considerations making it partial are not well-documented or
disclosed. On the other hand, it is generally difficult to accurately predict if a policy will visit a given
state or not based only on the knowledge of the policy and the batch dataset. As a result, the set of
concentrable policies in a hypothesis space may be too small to achieve reasonable performance or
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Table 1: Assumptions and sample complexity bounds of related work. π∗ and π̃∗ denote optimal
policies in the conventional and worst-case offline RL, respectively. πn denotes a sequence of policies
indexed with the sample size n. The realizability of π means that π-associated model-free parameters
(e.g., value functions, visitation weight functions and the policy itself) are realizable. ϵ > 0 is the
policy suboptimality given in Problem 4.1 (or equivalently in Problem 3.1, see Corollary 4.2 for the
equivalence). 0 < δ < 1 denotes the confidence parameter. H denotes the time horizon and roughly
comparable to (1 − γ)−1. Cgap and βgap denote the minimum and the lower-tail exponent of the
action value gaps, respectively. N denotes the cardinality of the function classes. The improvements
made by our result are emphasized. See Appendix A for more details.

Method
Assumptions

Sample complexity bound
Concentrability Realizability

Zhan et al. (2022) π∗ πn ϵ−6(1− γ)−4ln(N/δ)
Chen and Jiang (2022) π∗ π∗ ϵ−2H5C−2

gapln(N/δ)
Ozdaglar et al. (2023) π∗ π∗ ϵ−2(1− γ)−6C−2

gapln(N/δ)

Uehara et al. (2023) π∗ π∗ ϵ−2−4/βgap(1− γ)−6−4/βgap ln(N/δ)

Ours (Corollary 6.3) — π̃∗ ϵ−2(1− γ)−4ln(N/δ)

even empty.2 Therefore, for applying offline RL in such domains, we need a method that works well
without concentrability or any coverage-related conditions.

To tackle with this issue, we study offline RL with arbitrary data support. We present two major
results in this paper.

i) We develop worst-case offline RL (Problem 4.1), a new offline RL framework for handling
poor state-action coverage, which can be seen as a natural generalization of conventional
offline RL (Corollary 4.2).

ii) We develop worst-case minimax RL (WMRL, Section 6.3), a model-free algorithm address-
ing worst-case offline RL (Corollary 6.3). The resulting sample complexity bound improves
the previous state of the art in terms of both the weakness of the assumptions and the strength
of the bound (Table 1).

The rest of the paper is organized as follows. In Section 2, we review the previous work in the literature
of offline RL, centered around theoretical studies on the role of concentrability. In Section 3, we
introduce some preliminaries around Markov decision process (MDP), offline RL and concentrability.
Then, in Section 4, with the observation that offline RL is ill-posed without concentrability, we
introduce worst-case offline RL as a natural generalization and discuss some of its properties useful
in our subsequent analysis. In Section 5, we establish the connection between worst-case offline RL
and the Lagrangians derived from the saddle-point formulation of offline RL. In Section 6, exploiting
the connection established earlier, we construct a method for solving worst-case offline RL with
polynomial sample complexity. Finally, we discuss the limitation and the future work in Section 7.

2 Related Work

The notion of concentrability is introduced by Munos (2003); Munos and Szepesvári (2008); Antos
et al. (2008) to analyze the value/policy iteration algorithms, not necessarily in the context of offline
RL. Recently, it has been increasingly gaining traction as one of the key characteristics of the difficulty
of offline RL (Chen and Jiang, 2019) due to the distribution mismatch. In its original definition,
concentrability requires the norm of the density ratio ∥dππ/µβ∥∞ to be bounded uniformly for all the
policies π. Liu et al. (2020) showed that this uniform boundedness can be relaxed to the single-policy
boundedness with the principle of pessimism in the face of uncertainty (PFU). Considering the case
where the single-policy concentrability is even slightly violated, Xie et al. (2021) further analyzed the

2There are two typical examples for the empty case: i) when the time horizon of the policy evaluation is
(even ever so slightly) longer than the episode length of the collected data in time-inhomogeneous environments,
and ii) when there are undocumented restrictions on the actions taken by the behavior policy, but the trained
policy is modeled with distributions with full action supports such as Gaussian distributions.
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performance degradation caused by the lack of concentrability. Finally, we completely remove the
concentrability assumption by incorporating it into a new performance metric.

The removal of concentrability is useful not only for widening the applicability of offline RL, but
also strengthening the sample complexity bound by streamlining the analysis. Previously, Zhan
et al. (2022) established polynomial sample complexity bounds under the weakest known model-free
assumptions, yet being unable to achieving the statistically reasonable rate O(ϵ−2). Also, Chen and
Jiang (2022); Ozdaglar et al. (2023); Uehara et al. (2023) gave improved rates additionally assuming
that the minimum action value gap is bounded away from zero. On the other hand, under a set of
assumptions as weak as Zhan et al. (2022), our sample complexity bound achieves the rate of O(ϵ−2).
See Appendix A for more detailed discussions.

Algorithmically, the PFU principle is often materialized as the pessimistic or behavioral regular-
ization (Kumar et al., 2020; Fujimoto and Gu, 2021; Yu et al., 2020). Previous analyses are often
sensitive to the hyperparameters controlling the degree of such regularization, such as the truncation
threshold b in Liu et al. (2020), the Bellman consistency threshold ε in Xie et al. (2021); Chen
and Jiang (2022) and the regularization weight in Zhan et al. (2022); Uehara et al. (2023). On the
other hand, our method has no hyperparameter other than the choice of the function approximators.
One may see the root cause of this difference in that the PFU principle is built into our single new
performance metric, whereas the previous studies adopt it as an additional objective, resulting in
bi-objective optimizations.

3 Preliminaries

We denote the set of nonnegative real numbers by R+ = [0,∞) and the uniform norm of a function
g over its domain by ∥g∥∞ := supz∈dom(g) |g(z)|. We also denote by ∆(X ) the set of (generalized)
probability density functions on X relative to a suitable base measure,3 such as the counting measure
and the Lebesgue measure.

Markov decision process (MDP) and RL. LetM = (S,A, R, T ) be an MDP consisting of the
state space S, the action space A, the reward function R : S × A → ∆([0, 1]) and the transition
probability T : S ×A → ∆(S). We assume both S and A are finite sets for simplicity. The goal of
RL in general is to optimizing policy π : S → ∆(A) in terms of the policy value,

J(π) = J(π|M) := (1− γ)Eπ

∑
t≥0

γtrt

 ,

with a discount factor γ ∈ (0, 1). Here, the expectation Eπ is taken with respect to the Markov chain
generated with at ∼ π(·|st), rt ∼ R(st, at) and st+1 ∼ T (st, at), t ≥ 0, starting from a known
initial-state distribution s0 ∼ p0(s).

Offline constraint. In maximizing J(π), the offline constraint prohibits us to access the environ-
ment M except through the offline dataset D := {(si, ai, ri, s′i)}

n
i=1. We assume the dataset is

sampled from a fixed distribution pMdata ∈ ∆(S ×A× [0, 1]× S)n such that

pMdata(D) =
n∏

i=1

µ(si)β(ai|si)R(ri|si, ai)T (s′i|si, ai),

where µ ∈ ∆(S) and β : S → ∆(A) are the behavior state distribution and the behavior policy,
respectively. Typically, pMdata(D) represents the distribution of the past observational data. The
problem of offline RL is now formally given as follows.
Problem 3.1 (Offline RL). Given the offline dataset D and a small number ϵ > 0, find a policy π
achieving J∗ − J(π) ≤ ϵ, where J∗ := maxπ:S→∆(A) J(π).

Value, visitation and weight functions. Let r(s, a) := Ey∼R(s,a) [y] be the expected reward func-
tion and rπ(s) :=

∑
a r(s, a)π(a|s) be its marginalization with respect to policy π. Let T , T π and

3Examples of the generalized probability density functions include the Dirac’s delta function.
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T π
∗ be the raw transition operator, the policy transition operator and its adjoint given by T v(s, a) =∑
s′ v(s

′)T (s′|s, a), T πv(s) =
∑

a T v(s, a)π(a|s) and T π
∗ d(s) =

∑
s′,a′ d(s′)π(a′|s′)T (s|s′, a′),

respectively. Then, the state value function vπ : S → R, the action value function qπ : S ×A → R
and the state visitation distribution dπ ∈ ∆(S) are given by

vπ = (I − γT π)−1rπ, qπ = r + γT vπ, dπ = (1− γ)(I − γT π
∗ )−1p0,

as well as the state weight function wπ : supp(µ) → R and the action weight function fπ :
supp(µβ)→ R by

wπ(s) :=
dπ(s)

µ(s)
, fπ(s, a) := wπ(s) ρπ(s, a),

where supp(g) := {x ∈ dom(g) | g(x) ̸= 0} denotes the support of function g and ρπ(s, a) :=
π(a|s)
β(a|s) is the density ratio of π to β. We also define the optimal value functions by v∗(s) :=

maxπ v
π(s) and q∗(s, a) = maxπ q

π(s, a) as well as the set of the optimal policies Π∗ :=
{π : S → ∆(A) : vπ = v∗}, which by definition all attain J∗. See Table 2 for the summary of
the notation introduced above.

Concentrability. A policy π is said to be concentrable (or satisfying concentrability) if its state-
action visitation is contained in the data support, supp(dππ) ⊂ supp(µβ). We denote the set of all
the concentrable policies by ΠCC := {π : S → ∆(A) : supp(dππ) ⊂ supp(µβ)}.

4 Worst-Case Offline Reinforcement Learning

In offline RL (Problem 3.1), the information onM is restricted by the data support supp(µβ). In
such situations, one cannot know about the transition probability T (s, a) and the reward probability
R(s, a) for (s, a) ̸∈ supp(µβ). Consequently, the accurate estimation of J(π) is infeasible (even
with n =∞) for unconcentrable policies, and thus previous analyses on Problem 3.1 often require
that there exists at least one concentrable optimal policy, i.e., ΠCC ∩ argmaxπ J(π) ̸= ∅.
To remove such dependency on concentrability, we introduce a performance metric alternative
to J(π). Let U := {M′ : pM

′

data = pMdata} be the set of the environments indistinguishable from
the true environmentM with respect to the resulting data distribution pMdata. Noting that U is the
information-theoretic limit of the uncertainty on M under the offline constraint, we follow the
pessimism-in-the-face-of-uncertainty principle and consider the worst case within U,

J̃(π) := inf
M′∈U

J(π|M′), (1)

which we refer to as worst-case policy value. Replacing J(π) with J̃(π) in Problem 3.1, we arrive at
the following problem.

Problem 4.1 (Worst-case offline RL). Given the offline dataset D and a small number ϵ > 0, find a
policy π achieving J̃∗ − J̃(π) ≤ ϵ, where J̃∗ := maxπ:S→∆(A) J̃(π).

To facilitate the subsequent analysis on Problem 4.1, we next introduce the notion of truncated
environment, which is similar to, yet different from those previously considered by Liu et al. (2020);
Yin and Wang (2021) as it is based on the true and unknown data support rather than the empirical
one. The truncation is useful for characterizing the worst-case policy value J̃(π).

Definition 4.1 (Truncated environment). The truncation ofM with respect to µ and β is given by
M̃ = (S̃,A, T̃ , R̃), where S̃ = S ∪ {⊥} with ⊥ being an absorbing state with reward zero and

R̃(r|s, a) := χµ,β(s, a)R(r|s, a) + (1− χµ,β(s, a)) δ0(r), (2)

T̃ (s′|s, a) := χµ,β(s, a)T (s
′|s, a) + (1− χµ,β(s, a)) δ⊥(s

′), (3)

for s ∈ S and a ∈ A, where χµ,β(s, a) := I {µ(s) > 0} I {β(a|s) > 0} is the indicator function of
the support of µ(s)β(a|s) and δx ∈ ∆(X ) is the Dirac’s delta function located at x ∈ X .

Theorem 4.1. We have J̃(π) = J(π|M̃) for all π : S → ∆(A).
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Proof (sketch). It suffices to show J(π|M̃) ≤ J̃(π) ≤ J(π|M̃), where the first inequalilty follows
from J(π|M̃) ≤ J(π|M′) for allM′ ∈ U and the second inequality follows from M̃ ∈ U. See
Appendix D.1 for the complete proof.

In other words, worst-case offline RL is nothing but offline RL with the truncated environment
M̃. Thus, in principle, one can exploit conventional offline RL methods to solve Problem 4.1. We
hereafter refer to the truncated counterparts (those defined by replacingM with M̃) of vπ, v∗, qπ,
q∗, Π∗, dπ, wπ and fπ as ṽπ, ṽ∗, q̃π, q̃∗, Π̃∗, d̃π, w̃π and f̃π, respectively. Likewise, let r̃, r̃π, T̃ ,
T̃ π and T̃ π

∗ be the truncated counterparts of r, rπ , T , T π and T π
∗ , respectively.

Let us remark several key implications of Theorem 4.1. First, since the unknown parameters R̃ and T̃
of the truncated environment M̃ are only nontrivial on the data support, it is intuitively obvious that
J̃(π) can be accurately estimated even without the concetrability, given sufficiently large n. Thus, it
is reasonable to expect that Problem 4.1 does not require any concetrabilities to be well-posed, unlike
Problem 3.1. Second, the constructive existence of M̃ makes the relationship between J(π) and
J̃(π) clearer, as stated in the following corollary.

Corollary 4.1. We have J̃(π) = J(π) if π ∈ ΠCC and J̃(π) ≤ J(π) otherwise.

Proof. See Appendix D.2.

According to Corollary 4.1, the pessimism introduced by the truncation is mild in the sense that it
conserves the values of concentrable policies. Finally, it also clarifies the relationship between the
suboptimality metrics of the conventional and the worst-case problems.

Corollary 4.2. For all π : S → ∆(A), we have

J∗ − J(π) ≤ J̃∗ − J̃(π) (4)

if ΠCC ∩ argmaxπ J(π) ̸= ∅. Moreover, the equality is attained if in addition π ∈ ΠCC.

Proof. Trivial from Corollary 4.1.

In other words, solutions of the worst-case problem are also valid as solutions of the conventional
problem under the standard assumption, while the two solution concepts are identical if only concen-
trable policies are concerned. In this sense, worst-case offline RL is a natural generalization of the
conventional offline RL for handling arbitrary data distributions.

Finally, we conclude this section by showing a useful property of the worst-case optimal policies.
Let Πβ := {π : S → ∆(A) | supp(µπ) ⊂ supp(µβ)} be the set of the on-support policies, i.e., the
policies with the support covered by the behavior policy. The following lemma allows us to limit the
scope of policy optimization to Πβ without sacrificing the optimality in terms of M̃. The proof is
relegated to Appendix D.3.

Lemma 4.1. There is at least one worst-case optimal policy that is on-support, i.e., Π̃∗ ∩Πβ ̸= ∅.

5 Lagrangians for Worst-Case Offline Reinforcement Learning

In this section, we set up theoretical foundation of worst-case offline RL. Specifically, in Section 5.1,
we show a connection between J̃(π) and the Lagrangian of RL (Puterman, 2014). However, since
the Lagrangian in its original form is unstable to the function approximation error (Section 5.2), we
further introduce a regularized variant of it (Section 5.3).

5.1 Unregularized Lagrangian

Consider the following functional of v : S → R+ and f : supp(µβ)→ R+,

L(v, f) := (1− γ)Ep0
[v(s)] + Eµ,β

[
f(s, a) δTDv(s, a)

]
, (5)
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where Ep0 and Eµ,β are the expectation operators with respect to s ∼ p0(s) and (s, a) ∼ µ(s)β(a|s),
respectively, and δTD : RS → RS×A is the time-difference error operator given by δTDv(s, a) =
r(s, a) + γT v(s, a)− v(s).

We refer to L(v, f) as the (unregularized) Lagrangian since it has been known as the Lagrangian of
the linear-programming-based formulations of RL (Puterman, 2014; Chen and Wang, 2016; Nachum
et al., 2019; Zhang et al., 2021; Zhan et al., 2022). The following theorem reveals that, perhaps
surprisingly, it is also connected with worst-case offline RL.
Theorem 5.1. For all π ∈ Πβ ∩ Π̃∗, (ṽ∗, f̃π) is a saddle point of L(v, f) in RS

+ × RS×A
+ .

Proof (sketch). The key of the proof is the following identity of Lagrangian.

Lemma 5.1. For all π ∈ Πβ ∩ Π̃∗, we have

L(v, f) = J̃∗ − Eµ,β

[
(f − f̃π)(s, a) (I − γT̃ )(v − ṽ∗)(s, a)

]
+Dπ

V(v)−D∗
F(f), (6)

where Dπ
V(v) :=

∑
s̸∈supp(µ) d̃

π(s) v(s) and D∗
F(f) := Eµ,β [f(s, a) {ṽ∗(s)− q̃∗(s, a)}] .

Now, observe that the third term Dπ
V(v) and the fourth term D∗

F(f) in Eq. (6) are nonnegative since
all of v, f, d̃π and ṽ∗− q̃∗ are nonnegative. Therefore, Lemma 5.1 implies that Lagrangian is bounded
from below with L(v, f) ≥ J̃∗ taking f = f̃π , while bounded from above with L(v, f) ≤ J̃∗ taking
v = ṽ∗. Combining these two inequalities, a class of the saddle points of Lagrangian is identified as
desired. The full proof is found in Appendix E.2.

Note that the previous studies on the LP-based formulation of RL typically consider the saddle points
in a different domain, RS × RS×A

+ , where the domain of the primal variable v is unconstrained,
unlike our setting with the constraint v ≥ 0. This constraint is the key to establish the connection
with the worst-case environment M̃.

Theorem 5.1 superficially suggests that finding the saddle points of L(v, f) is a reasonable way of
finding the optimal policies with respect to M̃. However, in the next section, we show that it is
unstable and easily breaks down by the function approximation error.

5.2 Instability of Unregularized Lagrangian

When the state space S is large, it is practically infeasible to find a saddle point of L(v, f) naïvely
searching over the whole space RS

+×RS×A
+ . Therefore, one may introduce compact function classes

V ⊂ RS
+ and F ⊂ RS×A

+ and limit the scope of the search to these classes. Since we do not know
the saddle points (which motivates us to find one), such function classes likely incur the function
approximation error. Thus, it is likely that the saddle points (ṽ∗, f̃π) may sit near the search space
V × F , but not exactly included in the space, (ṽ∗, f̃π) ̸∈ V × F .

In this context, we show even a tiny function approximation error can completely disrupt the
connection established in Theorem 5.1. Consider the function classes Vϵ = {v ∈ RS

+ | v ≥ ṽ∗ + ϵ}
and Fϵ = {f ∈ RS×A

+ | ∃π ∈ Πβ ∩ Π̃∗ s.t. f ≤ f̃π − ϵ} with a small constant ϵ > 0. Then, even
though the function approximation error is small (ϵ for both V and F in terms of the L∞-norm), the
saddle point is collapsed to zero under the approximations with Vϵ and Fϵ. The proof is relegated to
Appendix E.3.
Corollary 5.1. Suppose Vϵ and Fϵ are nonempty. Then, the saddle points of L(v, f) in Vϵ × RS×A

+

must satisfy f = 0. Moreover, the saddle points of L(v, f) in RS
+ ×Fϵ must satisfy v = 0.

5.3 Regularized Lagrangian

Corollary 5.1 shows that the saddle points of Lagrangian cannot be used as a reliable way to find
the optimal policies with the function approximation. As a workaround, we introduce a regularized
Lagrangian,

K(v, f) := (1− γ)Eµ [v(s)] + Eµ,β

[
f(s, a) δTDv(s, a)

]
+

(1− γ)2

2
∥v∥22,µ̄ , (7)
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where µ̄ := µ+ γT β
∗ µ and ∥v∥p,µ̄ := {

∑
s µ̄(s)v

p(s)}1/p denotes the Lp(µ̄)-norm of the functions
over S. Then, it is shown that the regularized Lagrangian is also connected with worst-case offline
RL through its saddle points. To see this, let us define the regularized counterparts of d̃π , w̃π and f̃π

with d̆π := (1− γ)(I − γT̃ π
∗ )−1p̆π, w̆π := d̆π/µ, f̆π := w̆πρπ, obtained by substituting the initial

state distribution p0 with p̆π := µ+ (1− γ)ṽπµ̄.

Theorem 5.2. For all π ∈ Πβ ∩ Π̃∗, (ṽ∗, f̆π) is a saddle point of K(v, f) in RS
+×RS×A

+ . Moreover,
the primal solution ṽ∗ is unique on supp(µ̄).

Proof (sketch). Similarly as the proof of Theorem 5.1, the key is the following identity.

Lemma 5.2. There exist U∗ ∈ R such that, for all π ∈ Πβ ∩ Π̃∗,

K(v, f) = U∗ − Eµ,β

[
(f − f̆π)(s, a) (I − γT̃ )(v − ṽ∗)(s, a)

]
+ D̆π

V(v)−D∗
F(f), (8)

where D̆π
V(v) :=

∑
s̸∈supp(µ) d̆

π(s) v(s) + (1−γ)2

2 ∥v − ṽπ∥22,µ̄.

The first claim of Theorem 5.2 then follows from the fact D̆π
V(v) is nonnegative, and the second

claim follows from the strong convexity of K(v, f) with respect to v on supp(µ̄). The full proof is
in Appendix E.5.

Comparing Theorems 5.1 and 5.2, it turns out that the regularization does not alter the primal part
of the saddle points ṽ∗. Moreover, since K(v, f) is strongly convex in terms of v, the regularized
solution is more stable against the function approximation error as opposed to the unregularized
solution. To see this, denote the regularized primal solution under the function approximation by

ṽ∗♯ ∈ argmin
v∈V

max
f∈F

K(v, f), (9)

where V ⊂ RS
+ and F ⊂ RS×A

+ are compact function classes. Also denote the individual function
approximation errors of V and F by

ϵV := min
v∈V
∥v − ṽ∗∥1,µ̄ , ϵF := min

f∈F,π∈Πβ

{
B̄V∥f − f̆π∥1,µβ + 2(1− γ) ∥ṽπ − ṽ∗∥1,µ̄

}
, (10)

where B̄V := max {1 + γBV , BV} and BV := maxv∈V ∥v∥∞ are scale factors of V . Then, the
following lemma shows the stability of the approximate solution ṽ∗♯ in terms of the aggregated
function approximation error

εapp,V(V,F) :=
√

2 (2 +BF ) ϵV + 4
√
ϵF

1− γ
= O

(√
BF ϵV + ϵF
1− γ

)
,

where BF := maxf∈F ∥f∥∞ is the scale factor of F . The proof is relegated to Appendix E.6.
Lemma 5.3 (Stability of the regularized primal solution). We have ∥ṽ∗♯ − ṽ∗∥2,µ̄ ≤ εapp,V(V,F).

Note that the approximation error of F is trivially bounded by a simpler error term

ϵF ≤ B̄V min
f∈F,π∈Πβ∩Π̃∗

∥f − f̆π∥1,µβ ,

i.e., the L1-error with respect to the function f̆π of the optimal on-support policy π ∈ Πβ ∩ Π̃∗.
Our definition of the error is weaker than that, measuring the error with respect to that of the
possibly suboptimal on-support policy π ∈ Πβ in exchange for the additional suboptimality cost
2(1 − γ) ∥ṽπ − ṽ∗∥1,µ̄. This is beneficial if the optimal policies are difficult to approximate, like
deterministic policies in a continuous action space, yet some near-optimal policies such as the
soft-optimal policies π(a|s) ∝ exp{−ηq̃∗(s, a)} are easy to approximate.

We also note that the idea of stabilizing the saddle-point-based policy optimization via a strongly
convex regularizer is not new (Nachum et al., 2019; Lee et al., 2021; Zhan et al., 2022; Uehara et al.,
2023). The major difference here (other than the truncation) is that we regularize the value function
v (like Uehara et al. (2023)) but extract the information of the optimal policy from f (like Nachum
et al. (2019); Lee et al. (2021); Zhan et al. (2022)), which, combined with our worst-case framework,
results in a striking improvement in the sample complexity.
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6 Worst-Case Minimax Reinforcement Learning

Now, we present a method to solve worst-case offline RL with the saddle points of K(v, f). We
first introduce a method of extracting policy from the dual variable f (Section 6.1), then show the
suboptimality bound of the extracted policy (Section 6.2), which is our main result, and finally show
the sample complexity bound taking into account the finite sample approximation (Section 6.3).

6.1 Policy Extraction

Motivated by Theorem 5.2, we propose a method of extracting the worst-case optimal policy π∗ from
the saddle point of K(v, f). Specifically, we consider minimizing the loss function given by

DΞ(f ;w, π) := max
ξ∈Ξ
{Eµ,β [f(s, a) ξ(s, a)]− Eµ,π [w(s) ξ(s, a)]} , (11)

where w : S → R is an auxiliary weight function, w(s) := max {1− γ,w(s)} is its lower clipping
and Ξ ⊂ RS×A is a class of discriminator functions. Note that DΞ(f ;w, π) is the integral probability
metric (IPM) (Sriperumbudur et al., 2009) between f(s, a)µ(s)β(a|s) and w(s)µ(s)π(a|s) with
respect to the discriminators Ξ. With a sufficiently rich Ξ, this implies DΞ(f ;w, π) attains its
minimum value (i.e., zero) only if π = πf ,4 thereby informally justifies the minimization of Eq. (11)
as a way of policy extraction.

This approach introduces additional (functional) variables to be optimized, w : S → R and π : S →
∆(A). To simplify the notation, consider a parameter space Θ and suppose f , w and π share the
same parameter space Θ, i.e., there exists a mapping Θ ∋ θ 7→ (fθ, wθ, πθ), and redefine the dual
space with F = F(Θ) := {fθ | θ ∈ Θ}.5 We define the associated function approximation error with

ϵΘ := min
π∈Πβ

{
B̄V,ΞϵΘ(π) + 2(1− γ) ∥ṽ∗ − ṽπ∥1,µ̄

}
, (12)

where B̄V,Ξ := max{B̄V , BΞ, ∥ξ̃∗∥∞}, BΞ := maxξ∈Ξ ∥ξ∥∞ and

ϵΘ(π) := min
θ∈Θ

{∥∥∥fθ − f̆π
∥∥∥
1,µβ

+ ∥wθ − w̆π∥1,µ +BW ∥πθ − π∥TV,µ

}
(13)

denotes the π-specific function approximation error of Θ. Here, BW := maxθ∈Θ ∥wθ∥∞ is the
boundedness of wθ(s) and ∥ · ∥TV,µ is the mean total variation (TV) distance with respect to µ, given
by ∥π − π′∥TV,µ := Eµ

∑
a |π(a|s)− π′(a|s)|.

Finally, we conclude this section by introducing key quantities of the policy extraction for the
subsequent analysis. Let BΠ := maxθ∈Θ ∥πθ/π0∥∞ denote the size of the policy class with respect
to some fixed base policy π0. Also let ϵΞ := minξ∈Ξ ∥ξ− ξ̃∗∥1,µ(β+π0) be the function approximation
error of Ξ, where ξ̃∗(s, a) := q̃∗(s, a)− ṽ∗(s) is the optimal advantage function.

6.2 The Suboptimality Bound

Unifying the saddle-point problem and the policy extraction problem, we arrive at the aggregated
loss function

L(θ) := LSP(θ) + LX(θ), (14)
where LSP(θ) := −minv∈V K(v, fθ) is the loss of fθ as a dual solution (cf. Eq. (7)) and LX(θ) :=
DΞ(fθ;wθ, πθ) is the loss of the policy extraction from fθ to πθ (cf. Eq. (11)). Let us denote the
corresponding estimation error by

ϵest(θ) := L(θ)−min
θ∈Θ
L(θ). (15)

We also define the aggregated function approximation error with
εapp,Π(V,Θ,Ξ) := (2 + 3BF ) εapp,V(V,F(Θ)) + 3ϵΘ + {BF + (1− γ)BΠ} ϵΞ. (16)

The following theorem establishes an upper bound on the policy suboptimality in terms of ϵest(θ) and
εapp,Π(V,Θ,Ξ).

4The lower clipping w(s) ≥ 1 − γ > 0 plays a crucial role here to exclude the trivial minima f(s, ·) =
w(s) = 0 for every s ∈ S.

5There is no loss of generality due to the coupling introduced by the parameter sharing, since one can take it
as a product space Θ = ΘF ×ΘW ×ΘΠ.
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Theorem 6.1. For all θ ∈ Θ, we have

J̃∗ − J̃(πθ) ≤
∥w̃πθ∥∞
1− γ

{ϵest(θ) + εapp,Π(V,Θ,Ξ)} . (17)

Proof (sketch). At the heart of the proof is the following inequalities:

Γ(πθ) ≤
D∗

F(fθ) + LX(θ) +B′ϵΞ
1− γ

≤
ϵest(θ) + εapp,Π(V,Θ,Ξ)

1− γ
,

where Γ(πθ) := Eµ,πθ
[ṽ∗(s)− q̃∗(s, a)] denotes the average action value gap with policy πθ and

B′ := BF + (1 − γ)BΠ. Here, the lower clipping of w (Eq. (11)) and the stability of the primal
solution (Lemma 5.3) are instrumental in deriving the first and the second inequality, respectively.
Then, the proof is completed by bounding J̃∗ − J̃(πθ) in terms of Γ(πθ) invoking the performance
difference lemma in the worst-case environment. See Appendix F.1 for the full proof.

Theorem 6.1 suggests that one can minimize the policy suboptimality up to the function approximation
error on two conditions, i.e., the weight factor ∥w̃πθ∥∞ is appropriately bounded and the loss function
L(θ) is minimized. In the following, we first discuss how to satisfy the first condition.

A trivial way of bounding ∥w̃πθ∥∞ is uniformly bounding it with respect to all θ ∈ Θ. Define C̃∞ :=
maxθ∈Θ ∥w̃πθ∥∞, which we refer to as the uniform truncated concentrability (UTC) coefficient.
Since ∥w̃πθ∥∞ ≤ C̃∞, we get the following simple suboptimality bound.
Corollary 6.1. For all θ ∈ Θ, we have

J̃∗ − J̃(πθ) ≤
C̃∞

1− γ
{ϵest(θ) + εapp,Π(V,Θ,Ξ)} (18)

Note that C̃∞ is always finite because of the compactness of the whole policy space ∆(A)S and
the continuity and well-definedness of π 7→ ∥w̃π∥∞. Thus, Eq. (18) is non-vacuous for arbitrary
data distributions as opposed to the conventional concentrability-based results. Moreover, if the
conventional bounds are non-vacuous, C̃∞ recovers the conventional concentrability coefficient as
w̃π = wπ .

Eq. (18) can be further refined using the localized variants of the uniform coefficient C̃∞. The results
are presented as Corollaries F.2 and F.3 in Appendix F.3 due to space limitation.

6.3 Sample Complexity Analysis

Now that given Corollary 6.1 (and Corollaries F.2 and F.3 as well) bounds the weight factor ∥w̃πθ∥∞
with some milder variants of the concentrability coefficient, the remaining task, minimizing L(θ), is
handled within the framework of the statistical learning, leading to a sample complexity bound. Let

L̂(θ) := max
v∈V

max
ξ∈Ξ

1

n

∑
z∈D
L̂z(θ; v, ξ), (19)

be the empirical loss function where

L̂z(θ; v, ξ) := −
{
(1− γ) v(s) + fθ(s, a) {r + γv(s′)− v(s)}+ (1− γ)2 (v2(s) + γv2(s′))

2

}
+ fθ(s, a)ξ(s, a)− wθ(s)Ea′∼πθ(s) [ξ(s, a

′)] (20)
is the one-sample loss function, z ≡ (s, a, r, s′) ∈ S × A × [0, 1] × S denotes a transition record.
Note that Eq. (20) is an unbiased estimator of the objective function L(θ).6 Therefore, it is expected
that the oracle loss L(θ) can be approximated with the empirical loss L̂(θ) and hence the oracle
estimation error ϵest(θ) can be approximated with the empirical estimation error

ϵ̂est(θ) := L̂(θ)−min
θ∈Θ
L̂(θ). (21)

Formalizing such an intuition, the following corollary shows the empirical counterpart of Corollary 6.1.
See Appendix F.5 for the proof.

6Note that the expectation with respect to πθ can be computed exactly since the action space is finite. For the
continuous case, one can replace the expectation with the Monte-Carlo approximation without corrupting the
unbiasedness.
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Corollary 6.2. LetH ≡ H(V,Θ,Ξ) := {z 7→ L̂z(θ; v, ξ) | θ ∈ Θ, v ∈ V, ξ ∈ Ξ} be the class of the
one-sample loss functions and Rn(H) be its Rademacher complexity (Definition B.1). Then, for all
θ ∈ Θ and δ ∈ (0, 1), with probability 1− δ, we have

J̃∗ − J̃(πθ) ≤
C̃∞

1− γ

{
ϵ̂est(θ) + εapp,Π(V,Θ,Ξ) + 4Rn(H) +Ball

√
2 ln(2/δ)

n

}
,

where Ball := (1− γ)BV +BF B̄V + (1− γ)2B2
V + (BF +BW)BΞ is the aggregated scale factor.

The corollary above implies that minimizing Eq. (19), which is possible with the minimax optimizers
such as the one developed by Thekumparampil et al. (2019), gives a near-optimal policy in terms
of the worst-case environment M̃, up to the error proportional to the sum of the optimization error
ϵ̂est(θ), the approximation error εapp,Π(V,Θ,Ξ) and the statistical error O(Rn(H) + n−1/2). We
refer to this method as worst-case minimax reinforcement learning (WMRL).

The next corollary gives the sample complexity of WMRL in the simplified case where the function
approximators V , Θ and Ξ are all finite sets.
Corollary 6.3. Suppose V , F and Ξ are all finite sets and ϵ̂est(θ) = εapp,Π(V,Θ,Ξ) = 0. Take any
ϵ > 0 and 0 < δ < 1. Then, we have J̃∗ − J̃(πθ) ≤ ϵ with probability 1− δ if

n = Ω

(
B2

allC̃
2
∞

ϵ2(1− γ)2
ln
N
δ

)
, (22)

where N := |V| |Θ| |Ξ| denote the product of the cardinalities of the function approximators.

Proof. It follows from Corollary 6.2 with Massart’s lemma (Lemma B.2).

A few remarks follow. First, we can replace the UTC coefficient C̃∞ with the localized vari-
ants (Definitions F.1 and F.2) to obtain tighter bounds, by making the same argument starting from
Corollaries F.2 and F.3 instead of Corollary 6.1, respectively. Second, there are implicit dependencies
BV ≥ ∥ṽ∗∥∞ and BΞ ≥ ∥ξ̃∗∥∞ due to the realizability ṽ∗ ∈ V and ξ̃∗ ∈ Ξ that follows from
εapp,Π(V,Θ,Ξ) = 0. Hence, Eq. (22) has an implicit γ-dependency through the scale factor Ball,
which brings an extra Θ((1− γ)−2) factor in the worst case. Table 1 adopts this form for the fairness
of comparison.

7 Conclusion

To develop an offline RL method for challenging data distributions, we have introduced and studied a
generalization of the conventional framework called worst-case offline RL. As a result, we have shown
it is possible to learn a worst-case optimal policy without any data-support conditions. Moreover,
the presented sample complexity bound strictly improves the previous state of the art under the
single-policy realizability and the single-policy concentrability, suggesting the utility of the proposed
method even with non-challenging data distributions.

We anticipate the presented results are readily extendable to continuous state-action spaces, except
that the truncated concentrability coefficients are not unconditionally finite anymore. The results in
Appendix F.3 are particularly useful in this context, yet the complete picture on the conditions of
their boundedness largely remains to be studied in future work.
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A Additional Discussion on Table 1

In Table 1, we compare our result with the previous results on the sample complexity of the conven-
tional offline RL under the weakest known assumptions. The weakest known means that it relies only
on the assumptions of the single-policy realizability and the single-policy concentrability. Specifi-
cally, they do not assume the Bellman completeness (Munos and Szepesvári, 2008; Xie et al., 2021;
Chen and Jiang, 2022) or its variants (Zanette, 2023; Rashidinejad et al., 2023), the model-based
realizability (Uehara and Sun, 2022) or the all-policy realizability (Jiang and Huang, 2020), which
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Meaning Symbol Type Definition

Expectation w.r.t. action Pπ RS×A → RS Pπq(s) =
∑

a q(s, a)π(a|s)
Extension of action Pπ

∗ RS → RS×A Pπ
∗ d(s, a) = d(s)π(a|s)

Backward transition T RS → RS×A T v(s, a) =
∑

s′ v(s
′)T (s′|s, a)

— with policy T π RS → RS PπT
Forward transition T∗ RS×A → RS T∗c(s′) =

∑
s,a T (s

′|s, a) c(s, a)
— with policy T π

∗ RS → RS T∗Pπ
∗

Marginal reward func. rπ S → R Pπr
State value func. vπ S → R (I − γT π)−1rπ

Optimal — v∗ S → R v∗(s) = maxπ v
π(s)

Action value func. qπ S ×A → R r + γT vπ
Optimal — q∗ S ×A → R q∗(s, a) = maxπ q

π(s, a)

Optimal policies Π∗ 2∆(A)S {π : S → ∆(A) : vπ = v∗}
State visitation dist. dπ S → R (1− γ)(I − γT π

∗ )−1p0
State weight func. wπ supp(µ)→ R dπ/µ
Policy ratio ρπ supp(µβ)→ R π/β
Action weight func. fπ supp(µβ)→ R wπ ρπ

Policy value J(π) R (1− γ)Ep0
[vπ(s)]

Optimal — J∗ R maxπ J(π)

Table 2: Basic Notation

are strictly stronger than the single-policy realizability and deemed to be rather stringent (Chen and
Jiang, 2019). Below, we discuss each of the methods listed in the table.

Leveraging the Lagrangian-based formulation of RL, Zhan et al. (2022) showed the polynomial
sample complexity only with the single-policy realizability and the single-policy concentrability for
the first time. However, the order of the sample complexity bound O(ϵ−6) is significantly looser than
the standard statistical rate O(ϵ−2). Moreover, their realizability assumption requires the function
approximators to include the value/weight functions associated with a policy πn depending on the
sample size n. In particular, the resulting realizability condition is difficult to interpret since there is
no explicit characterization of πn.

Chen and Jiang (2022) took a different approach, the pessimistic value learning, achieving the
statistically reasonable rate O(ϵ−2). One of the main drawbacks of their result is, however, that
the sample complexity bound blows up if the action value gap Cgap is near zero. Here, the action
value gap is defined as the minimum gap in the values of the best action and the second best action,
Cgap = mins∈S maxa∈A{q∗(s, a)−maxa′ ̸=a q

∗(s, a′)}, which becomes (near) zero if there exist
two actions that are (near) optimal for even one state. In addition, it only competes with the optimal
policy π∗ and requires the data to cover the corresponding visitation distribution dπ

∗
. Finally, the

time-horizon dependency O(H5) is a bit worse than the other results in the table.

Ozdaglar et al. (2023) showed two distinct results: one requiring a completeness-type assumption
and the other requiring realizability and action-value-gap assumptions, in addition to concentrability.
We included the latter to the table. Roughly speaking, their result is similar to that of Chen and Jiang
(2022) except with the difference in the infinite/finite time horizons. Consequently, it also requires
the action gap to be bounded away from zero. We note that their algorithm relies on a constrained LP,
where the number of the constraints is equal to the size of S, making it possibly difficult to scale to
practical problems.

Uehara et al. (2023) also proposed two distinct methods: one establishes slower O(ϵ−8) rate with the
entropy regularization method, and the other establishes a sample complexity depending on so-called
the soft action value gap. We only shows the latter in Table 1. For the latter result, the new condition
on the soft action value gap relaxes those imposed on the ordinary action value gap by Chen and Jiang
(2022); Ozdaglar et al. (2023). The order of the resulting sample complexity bound is O(ϵ−2+4/βgap),
where βgap > 0 corresponds to the lower-tail exponent of the distribution of the state-wise action
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value gaps. We also note that these bounds are explicitly depending on the size of the action space A,
which could be a potential drawback of the entropy-based method.

Compared to these results, our sample complexity bound has the following advantages. First of all, it
gives the performance guarantees even if there is no concentrable policies. Second, it only requires
the model-free realizability with respect to a (fixed) worst-case optimal policy π̃∗. Third, it achieves
the statistically reasonable rate O(ϵ−2) without any dependencies on the action value gap. Finally,
it has no explicit dependency in the algorithm on the size of S and A, even in the policy extraction
process.

B Rademacher Complexity and Uniform Convergence

In this section, we introduce the Rademacher complexity and its properties as well as the celebrated
uniform convergence theorem. Below, letZ be a sample space, p ∈ ∆(Z) be a probability distribution
on it, and G ⊂ RZ be a set of functions from Z to R.

Definition B.1 (Rademacher complexity). The Rademacher complexity of G with the sample size
n ≥ 1 is given by

Rn(G) := Eσn,zn

[
sup
g∈G

1

n

n∑
i=1

σig(zi)

]
, (23)

where Eσn,zn denotes the expectation with respect to samples σn = {σi}ni=1 and zn = {zi}ni=1
drawn from Uniformn({−1,+1}) and pn, respectively.

Lemma B.1 (Uniform convergence theorem). Suppose ∥g∥∞ ≤ c for all g ∈ G. Then, for all
δ ∈ (0, 1), we have

sup
g∈G

∣∣∣∣∣ 1n
n∑

i=1

[g(zi)]− E [g(z1)]

∣∣∣∣∣ ≤ 2Rn(G) + c

√
2 ln(2/δ)

n

with probability 1− δ on the draw of zn ∼ pn.

Proof. Refer to Claim 1, Theorem 26.5, Shalev-Shwartz and Ben-David (2014) for one-
side high-probability bound and apply it to both of supg∈G

{
1
n

∑n
i=1 [g(zi)]− E [g(z1)]

}
and

supg∈G(−1)
{

1
n

∑n
i=1 [g(zi)]− E [g(z1)]

}
setting the confidence parameter to δ/2. The proof is

completed by taking the union of the events that these high-probability bounds do not hold.

The following is another well-known result of the Rademacher complexity.

Lemma B.2 (Massart’s lemma). For a finite set G, we have

Rn(G) ≤M(G)
√

2 ln |G|
n

,

where

M(G) := sup
g,g′∈G, z∈Z

|g(z)− g′(z)| .

Proof. Refer to Shalev-Shwartz and Ben-David (2014), Lemma 26.8.

C Basic Properties of Regularized Lagrangian

In this section, we show basic property of regularized Lagrangian (Eq. (7)).

Lemma C.1 (Primal Lipschitz continuity). For all v, v′ : S ×A → [0, (1− γ)−1] and f ∈ F , we
have

|K(v, f)−K(v′, f)| ≤ (2 +BF ) ∥v − v′∥1,µ̄
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Proof. Observe that by Eq. (7)

|K(v, f)−K(v′, f)| ≤ (1− γ) ∥v − v′∥1,µ +
∥∥f · (δTDv − δTDv′)

∥∥
1,µβ

+ (1− γ) ∥v − v′∥1,µ̄ .
The second term on the RHS is further bounded as∥∥f · (δTDv − δTDv′)

∥∥
1,µβ

= ∥f · (I − γT )(v − v′)∥1,µβ
(a)
≤ BF ∥(I − γT )(v − v′)∥1,µβ
(b)
≤ BF ∥v − v′∥1,µ̄ ,

where (a) follows from Hölder’s inequality and (b) follows from the triangle inequality. We obtain
the desired result by summing up both sides of the two inequalities since µ ≤ µ̄.

Lemma C.2 (Stability of minimax value against dual error). For all v ≥ 0 and π ∈ Πβ , we have

K(v, f) ≥ U∗ − B̄V

∥∥∥f − f̆π
∥∥∥
1,µβ
− 2(1− γ) ∥ṽ∗ − ṽπ∥1,µ̄ ,

where B̄V := max {1 + γBV , BV}.

Proof. Observe that

K(v, f)
(a)
≥ K(v, f)−Dπ

V(v)

(b)
= U(π)− Eµ,β

[
(f − f̆π)(s, a) (I − γT̃ )(v − ṽπ)(s, a)

]
−Dπ

F(f)

(c)
= U(π)− Eµ,β

[
(f − f̆π)(s, a) (I − γT̃ )(v − ṽπ)(s, a)

]
− Eµ,β

[
(f − f̆π)(s, a) {ṽπ(s)− q̃π(s, a)}

]
(d)
= U(π) + Eµ,β

[
(f − f̆π)(s, a)

{
r(s, a) + γT̃ v(s, a)− v(s)

}]
(e)
≥ U(π)− B̄V

∥∥∥f − f̆π
∥∥∥
1,µβ

,

where (a) follows from the nonegativity of Dπ
V(v), (b) from Lemma E.3, (c) from Dπ

F(f̆
π) = 0, (d)

from q̃π(s, a) − γT̃ v(s, a) = r(s, a) and (e) from Hölder’s inequality with |r + γT̃ v − v| ≤ B̄V .
The claim is then proved by the continuity of U(π),

U∗ − U(π) = (1− γ) ∥ṽ∗ − ṽπ∥1,µ +
(1− γ)2

2
Eµ̄ [(ṽ

∗ + ṽπ)(ṽ∗ − ṽπ)]

≤ (1− γ) ∥ṽ∗ − ṽπ∥1,µ + (1− γ) ∥ṽ∗ − ṽπ∥1,µ̄
≤ 2(1− γ) ∥ṽ∗ − ṽπ∥1,µ̄ .

D Proofs of Section 4

D.1 Proof of Theorem 4.1

Proof. The claim M̃ ∈ U is trivial from Definition 4.1. The other claim, J(π|M̃) ≤ J(π|M′),
follows from that i) r̃(s, a) ≤ r(s, a) with r̃(s, a) = Ey∼R(y|s,a) [y] for all s ∈ S and a ∈ A and ii)
the truncated transition probability T̃ (·|s, a), when in conflict with T (·|s, a), leads to the absorbing
state ⊥, which has the lowest possible cumulative discounted value, zero.

D.2 Proof of Corollary 4.1

Proof. Since the inequality is trivial from Eq. (1), we show the equality. Observe that the state-action
pair (st, at) at time t ≥ 0 stays inside supp(µβ) almost surely for all t ≥ 0 if supp(dππ) ⊂
supp(µβ). Hence, the law of the reward sequence {rt}t≥0 generated with π is the same underM
and M̃, leading to J(π|M̃) = J(π|M).
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D.3 Proof of Lemma 4.1

Proof. We show denying the conclusion results in contradiction. Take a policy π ∈ Π̃∗.
Let χβ(s, a) := I {(s, a) ∈ supp(β)} be the indicator function of supp(β). Let zπ(s) :=∑

a χβ(s, a)π(a|s) be the mass of π(·|s) inside the support of β, which satisfies 0 ≤ zπ(s) ≤ 1 for
all s ∈ S.

Let π′ : S → ∆(A) be a policy proportional to π with the support restricted to supp(β), i.e.,
zπ(s)π

′(a|s) = χβ(s, a)π(a|s) for all s ∈ S and a ∈ A.

By the definitions of r̃π and T̃π , we now have

r̃π(s) =
∑
a

χβ(s, a)π(a|s) r(s, a)

=
∑
a

zπ(s)π′(a|s) r(s, a)

= zπ(s)
∑
a

χβ(s, a)π
′(a|s) r(s, a)

= zπ(s) r̃π
′
(s) ≤ r̃π

′
(s)

and

T̃ πv(s) =
∑
a,s′

π(a|s)χµ,β(s, a)T (s
′|s, a) v(s′)

=
∑
a,s′

zπ(s)π′(a|s)T (s′|s, a) v(s′)

= zπ(s)
∑
a,s′

π′(a|s)χµ,β(s, a)T (s
′|s, a) v(s′)

= zπ(s) T̃ π′
v(s) ≤ T̃ π′

v(s)

for all v : S → [0,∞) and s ∈ S. Therefore, we have for all s ∈ S

ṽ∗(s) = ṽπ(s) = (I − γT̃ π)−1rπ(s) =
∑
t≥0

(γT̃ π)trπ(s) ≤
∑
t≥0

(γT̃ π′
)trπ

′
(s) = ṽπ

′
(s),

which leads to the strong optimality ṽπ
′
= ṽ∗. However, we also have π′ ∈ Πβ by the definition,

contradicting with the assumption Π̃∗ ∩Πβ = ∅.

E Proofs of Section 5

E.1 Proof of Lemma 5.1

The proof relies on two lemmas (Lemmas E.1 and E.2), where the second one is built on top of the
first one. Then, Lemma 5.1 is immediately proved as a special case of Lemma E.2 with π being
restricted to Π̃∗.

Lemma E.1 gives a saddle-point decomposition of Lagrangian ignoring the offline constraint.

Lemma E.1 (Incomplete saddle-point decomposition of Lagrangian). For all π : S → ∆(A),

L(v, f) = J(π) +
∑
s,a

(fµβ − dππ)(s, a) δTDv(s, a). (24)

Proof. Comparing the LHS and the RHS, it suffices to show

J(π)− (1− γ)Ep0 [v(s)] =
∑
s,a

dπ(s)π(a|s) δTDv(s, a).
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This is seen by simplifying the RHS of the above equation as follows,∑
s,a

dπ(s)π(a|s) δTDv(s, a)
(a)
=
∑
s

dπ(s) (I − γT π)(vπ − v)

(b)
=
∑
s

(I − γT π
∗ )dπ(s) (vπ − v)

(c)
= (1− γ)

∑
s

p0(s) (v
π − v)

(d)
= J(π)− (1− γ)Ep0

[v(s)] .

Here, (a) follows from
∑

a π(a|s) δTDv(s, a) = (rπ + γT πv − v)(s) and r̃π = (I − γT π)vπ, (b)
from (I − γT π

∗ ) being the adjoint operator of (I − γT π), (c) from (1− γ)p0 = (I − γT π
∗ )dπ , and

(d) from the definition of J(π).

Note that the second term of Eq. (24) may have no root with respect to f if the data support does not
cover the visitation distribution dπ , hence incomplete. Lemma E.2 gives a modification of Eq. (24) to
fix this problem.
Lemma E.2 (Generalized saddle-point decomposition of Lagrangian). For all π ∈ Πβ , we have

L(v, f) = J̃(π)− Eµ,β

[
(f − f̃π)(s, a) (I − γT̃ )(v − ṽπ)(s, a)

]
+Dπ

V(v)−Dπ
F(f), (25)

where Dπ
V(v) :=

∑
s̸∈supp(µ) d̃

π(s) v(s) and Dπ
F(f) := Eµ,β [f(s, a) {ṽπ(s)− q̃π(s, a)}] .

Proof. Since Lagrangian is defined with r(s, a) and T (·|s, a) only on the support of the offline data
distribution supp(µβ), Lemma E.1 together with the indistinguishability of M̃ andM gives

L(v, f) = J̃(π) +
∑
s,a

(fµβ − d̃ππ)(s, a) δ̃TDv(s, a),

where δ̃TDv := r̃ + γT̃ v − v. The second term of the RHS of the above equation further evaluated
by separating the summation to the on-support and off-support terms∑

s,a

(fµβ − d̃ππ)(s, a) δ̃TDv(s, a)

=

 ∑
(s,a)∈supp(µβ)

+
∑

(s,a)̸∈supp(µβ)

 (fµβ − d̃ππ)(s, a) δ̃TDv(s, a)

(a)
= Eµ,β

[
(f − f̃π)(s, a) δ̃TDv(s, a)

]
+

∑
(s,a)̸∈supp(µβ)

d̃π(s)π(a|s) v(s)

(b)
= −Eµ,β

[
(f − f̃π)(s, a) (I − γT̃ )(v − ṽπ)(s, a)

]
−Dπ

F(f)

+

 ∑
s̸∈supp(µ),a∈A

+
∑

s∈supp(µ),a ̸∈supp(β(s))

 d̃π(s)π(a|s) v(s)

(c)
= −Eµ,β

[
(f − f̃π)(s, a) (I − γT̃ )(v − ṽπ)(s, a)

]
−Dπ

F(f) +Dπ
V(v),

where (a) follows from that f̃π(s, a)µ(s)β(a|s) = d̃π(s)π(a|s) if (s, a) ∈ supp(µβ) and
δTDv(s, a) = −v(s) if (s, a) ̸∈ supp(µβ), (b) from transforming r̃ in the first term, within δ̃TD, with
r̃ = (I−γT̃ )ṽπ+(q̃π− ṽπ) and simplify the resulting (q̃π− ṽπ) with Ea∼β(a|s)[f̃

π(s, a)(q̃π(s, a)−
ṽπ(s))] = 0, and (c) from evaluating the last summation as zero with the fact supp(µπ) ⊂
supp(µβ).

Finally, Lemma 5.1 is shown by taking π such that π ∈ Πβ ∩ Π̃∗.
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E.2 Proof of Theorem 5.1

Proof. First, see Appendix E.1 for the proof of Lemma 5.1. Then, recall that (ṽ∗, f̃π) is a saddle point
of L(v, f) if L(ṽ∗, f) ≤ L(ṽ∗, f̃π) ≤ L(v, f̃π) for all v, f ≥ 0. By Eq. (6) with the nonnegativity
of Dπ

V(v) and D∗
F(f), it suffices to show Dπ

V(ṽ
∗) = 0 and D∗

F(f̃
π) = 0. The former follows from

ṽ∗(s) = 0 for all s ̸∈ supp(µ) and the latter follows from Ea∼β(a|s)[f̃
π(s, a) {ṽ∗(s)− q̃∗(s, a)}] =

w̃π(s)
{
ṽ∗(s)− Ea∼π(a|s)[q̃

∗(s, a)]
}
= 0 for all π ∈ Πβ ∩ Π̃∗.

E.3 Proof of Corollary 5.1

Proof. Note that the existence of the saddle points is always ensured since the (restricted) domains
of v and f are all convex. Therefore, the first claim is reduced to 0 = argmaxf≥0 minv∈Vϵ

L(v, f),
which is shown by Lemma 5.1 and the fact (I − γT̃ )(v− ṽ) ≥ (1− γ) ϵ > 0 for all v ∈ Vϵ. Besides,
the second claim is reduced to 0 = argminv≥0 maxf∈Fϵ

L(v, f), which is also shown by Lemma 5.1
and the fact Eµ,β [(f − f̃π)(s, a) (I − γT̃ )(v − ṽ∗)(s, a)] ≥ (1 − γ) ϵET̃ π

∗ µ [(v − ṽ∗)(s)], which
attains the minimum uniquely with v = 0.

E.4 Proof of Lemma 5.2

Define

U(π) := (1− γ)Eµ [ṽ
π(s)] +

(1− γ2)

2
∥ṽπ∥22,µ̄ .

Then, Lemma 5.2 is proved as a special case of the following lemma with the restriction π ∈ Πβ ∩ Π̃∗

and U∗ := (1− γ)Eµ [ṽ
∗(s)] + (1−γ2)

2 ∥ṽ∗∥22,µ̄.

Lemma E.3 (Generalized saddle-point decomposition of regularized Lagrangian). For all π ∈ Πβ ,

K(v, f) = U(π)− Eµ,β

[
(f − f̆π)(s, a) (I − γT̃ )(v − ṽπ)(s, a)

]
+ D̆π

V(v)−Dπ
F(f). (26)

Proof. Observe that

v2 = (v − ṽπ)2 + 2ṽπv − (ṽπ)2.

Thus, multiplying both sides with (1− γ)2/2 and plugging to Eq. (7), we get

K(v, f) =
(1− γ)2

2

(
∥v − ṽπ∥22,µ̄ − ∥ṽ

π∥22,µ̄
)

+ (1− γ)
∑
s

{µ(s) + (1− γ) ṽπ(s) µ̄(s)} v(s) + Eµ,β

[
f(s, a) δTDv(s, a)

]
.

Now, applying Lemma E.2 on the last two terms of the RHS with the formal substitution p0 ← p̆π,
we have

K(v, f) =
(1− γ)2

2

(
∥v − ṽπ∥22,µ̄ − ∥ṽ

π∥22,µ̄
)

+
∑
s

d̆π(s) r̃π(s)− Eµ,β

[
(f − f̆π)(s, a) (I − γT̃ )(v − ṽπ)(s, a)

]
+

∑
s ̸∈supp(µ)

d̆π(s) v(s)−Dπ
F(f)

=
∑
s

d̆π(s) r̃π(s)− (1− γ)2

2
∥ṽπ∥2,µ̄

− Eµ,β

[
(f − f̆π)(s, a) (I − γT̃ )(v − ṽπ)(s, a)

]
+ D̆π

V(v)−Dπ
F(f),

where J̃(π), d̃π(s) and f̃π(s, a) in Lemma 5.1 are replaced with
∑

s d̆
π(s) rπ(s), d̆π(s) and f̆π(s, a),

respectively, due to the substitution. Finally, the proof is concluded by simplifying the first term on
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the RHS ∑
s

d̆π(s) r̃π(s) = (1− γ)
∑
s

(I − γT̃ π
∗ )−1 {µ+ (1− γ)ṽπµ̄} (s) r̃π(s)

(a)
= (1− γ)

∑
s

{µ+ (1− γ)ṽπµ̄} (I − γT̃ π)−1r̃π(s)

(b)
= U(π) +

(1− γ)2

2
∥ṽπ∥2,µ̄ ,

where (a) follows from the fact (I − γT̃ π
∗ )−1 is the adjoint operator of (I − γT̃ π)−1 and (b) is owing

to ṽπ = (I − γT̃ π)r̃π .

E.5 Proof of Theorem 5.2

Proof. First, see Appendix E.4 for the proof of Lemma 5.2. Then, note that the third term D̆π
V(v)

is nonegative for all v ≥ 0 since d̆π ≥ 0. Thus, we have K(v, f) ≥ U∗ taking f = f̆π and
K(v, f) ≤ U∗ taking v = ṽ∗. The first claim is then proved by combining these two inequalities, in
the same manner as the proof of Theorem 5.1. The second claim, the uniqueness of ṽ∗, follows from
the strong convexity of K(·, f).

E.6 Proof of Lemma 5.3

Proof. Denote the primal excess risk function relative to F by

εPER(v) := max
f∈F

K(v, f)−min
v≥0

max
f∈F

K(v, f)

and its minimizer by v∗ := argminv≥0 maxf∈F K(v, f). Now, the strong convexity of K(·, f)
implies the strong convexity of εPER and thus, for all v : S → R,

(1− γ)2

2
∥v − v∗∥22,µ̄ ≤ εPER(v).

We utilize this bound via the triangle inequality

∥∥ṽ∗♯ − ṽ∗
∥∥
2,µ̄
≤
∥∥ṽ∗♯ − v∗

∥∥
2,µ̄

+ ∥v∗ − ṽ∗∥2,µ̄ ≤

√
2εPER(ṽ∗♯ ) +

√
2εPER(ṽ∗)

1− γ
.

Then, each term on the RHS is bounded by

εPER(ṽ
∗) ≤ 2ϵF , (27)

εPER(ṽ
∗
♯ )− εPER(ṽ

∗) ≤ (2 +BF )ϵV , (28)

completing the proof. The proofs of Eqs. (27) and (28) are separately given below.

Proof of Eq. (27). Recall that by definition

εPER(ṽ
∗) = max

f∈F
K(ṽ∗, f)− argmin

v≥0
max
f∈F

K(v, f).

Then, on the RHS, the first term is upper bounded with U∗ by Theorem 5.2 and the second term
(without the negative sign) is lower bounded by Lemma C.2, leading to the inequality

εPER(ṽ
∗) ≤ min

f∈F

{
B̄V

∥∥∥f − f̆π
∥∥∥
1,µβ

+ 2(1− γ) ∥ṽ∗ − ṽπ∥1,µ̄

}
for all π ∈ Πβ . The proof is completed by taking the minimum with respect to π.

Proof of Eq. (28). It is immediately seen from

εPER(ṽ
∗
♯ )− εPER(ṽ

∗) = min
v∈V

max
f∈F

K(v, f)−max
f∈F

K(ṽ∗, f)

≤ min
v∈V

max
f∈F
{K(v, f)−K(ṽ∗, f)} .

≤ (2 +BF )min
v∈V
∥v − ṽ∗∥1,µ̄ ,

where the last inequality follows from Lemma C.1.

19



F Proofs of Section 6

F.1 Proof of Theorem 6.1

Recall that the average action value gap is given by

Γ(π) := Eµ,π [ṽ
∗(s)− q̃∗(s, a)] .

The following lemma establishes the connection of Γ(πθ) and ϵest(θ).
Lemma F.1. For all θ ∈ Θ, we have

Γ(πθ) ≤
ϵest(θ) + εapp,Π(V,Θ,Ξ)

1− γ
.

Proof. Refer to Appendix F.2.

Then, Theorem 6.1 is proved by combining Lemma F.1 with the following lemma.
Lemma F.2. For all π : S → ∆(A), we have

J̃∗ − J̃(π) ≤ ∥w̃π∥∞ Γ(π).

Proof. It follows directly from Hölder’s inequality with the performance difference lemma for the
truncated environment (Lemma F.3).

F.2 Proof of Lemma F.1

The proof relies on the following variant of the performance difference lemma adopted for the
worst-case environment M̃.
Lemma F.3 (Worst-case performance difference lemma). For all π : S → ∆(A), we have

J̃∗ − J̃(π) = Eµ,π [w̃
π(s) {ṽ∗(s)− q̃∗(s, a)}] .

Consequently, for all π ∈ Πβ ,

J̃∗ − J̃(π) = Eµ,β

[
f̃π(s, a) {ṽ∗(s)− q̃∗(s, a)}

]
.

Proof. Observe that

J̃∗ = (1− γ)
∑
s

p0(s) ṽ
∗(s) =

∑
s

d̃π(s) (I − γT̃ π)ṽ∗(s) = Eµ

[
w̃π(s) (I − γT̃ π)ṽ∗(s)

]
,

where the second equality follows from (I − γT̃ π
∗ )d̃π = p0 and the third equality follows from

ṽ∗(s) = 0 and T̃ πv(s) = 0 for all s ̸∈ supp(µ) and π : S → ∆(A). Thus,

J̃∗ − J(π) = Eµ

[
w̃π(s) (I − γT̃ π)ṽ∗(s)

]
− Eµ [w̃

π(s) r̃π(s)]

= Eµ [w̃
π(s) {ṽ∗(s)− Pπ q̃∗(s)}]

= Eµ,π [w̃
π(s) {ṽ∗(s)− q̃∗(s, a)}]

where the second equality follows from r̃π + γT̃ π ṽ∗ = Pπ q̃∗. This proves the first claim.

The second claim follows from the definition of f̃π .

Let p̆∗ := µ+ (1− γ)ṽ∗µ̄ be an alternative (unnormalized) initial state distribution and

f̆π,∗(s, a) := (1− γ)
(I − γT π

∗ )p̆∗(s)

µ(s)
ρπ(s, a) (29)

be the corresponding action visitation weight function. Applying Lemma F.3 to this setting, we obtain
the following corollary.
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Corollary F.1. Define

Ũ(π) := (1− γ)
∑
s

p̆∗(s) ṽπ(s)

and let Ũ∗ := (1− γ)
∑

s p̆
∗(s) ṽ∗(s) be its maximum. Then, we have

Ũ∗ − Ũ(π) = Eµ,β

[
f̆π,∗(s, a) {ṽ∗(s)− q̃∗(s, a)}

]
.

Now we are prepared to prove Lemma F.1.

Proof of Lemma F.1. Let ξ∗♯ ∈ argminξ∈Ξ ∥ξ − ξ̃∗∥1,µβ0
. Now, observe that

Γ(πθ) = Eµ,πθ

[
−ξ̃∗(s, a)

]
(a)
≤ Eµ,πθ

[
−ξ∗♯ (s, a)

]
+BΠϵΞ

(b)
≤ 1

1− γ
Eµ,πθ

[
wθ(s)

{
−ξ∗♯ (s, a)

}]
+BΠϵΞ

(c)
≤ 1

1− γ

{
Eµ,β

[
fθ(s, a)

{
−ξ∗♯ (s, a)

}]
+DΞ(fθ;wθ, πθ)

}
+BΠϵΞ

(d)
≤ 1

1− γ

{
Eµ,β

[
fθ(s, a)

{
−ξ̃∗(s, a)

}]
+BFϵΞ +DΞ(fθ;wθ, πθ)

}
+BΠϵΞ

(e)
=

1

1− γ
{D∗

F(fθ) + LX(θ) +BFϵΞ}+BΠϵΞ (30)

where (a) follows from ∥ξ∗♯ − ξ̃∗∥1,µπθ
≤ BΠϵΞ, (b) from Hölder’s inequality with −ξ̃∗(s, a) ≥ 0

and wθ ≥ 1− γ, and (c) from Eq. (11), (d) from ∥ξ∗♯ − ξ̃∗∥1,µβ ≤ BΠϵΞ, and (e) from the definition
of D∗

F(f) (Lemma 5.1) and LX(θ). In the rest of the proof, we bound D∗
F(fθ) + LX(θ) with ϵest(θ).

Fix any θ′ ∈ Θ and π ∈ Πβ . Let ṽ∗♯ ∈ argminv∈V maxf∈F K(v, f) and f̆∗
♯ ∈

argmaxf∈F K(ṽ∗♯ , f). Also let K̄∗ := K(ṽ∗♯ , f̆
∗
♯ ) = minv∈V maxf∈F K(v, f) be the correspond-

ing minimax value. Then, K̄∗ + LSP(θ) is lower-bounded with D∗
F(fθ) −D∗

F(fθ′) up to an error
term,

K̄∗ + LSP(θ) = max
v∈V

{
K(ṽ∗♯ , f̆

∗
♯ )−K(v, fθ)

}
(a)
≥ K(ṽ∗♯ , f̆

∗
♯ )−K(ṽ∗♯ , fθ)

(b)
≥ K(ṽ∗♯ , fθ′)−K(ṽ∗♯ , fθ)

(c)
= D∗

F(fθ)−D∗
F(fθ′) + Eµ,β

[
(fθ − fθ′)(s, a) (I − γT̃ )(ṽ∗♯ − ṽ∗)(s, a)

]
(d)
≥ D∗

F(fθ)−D∗
F(fθ′)− 2BF

∥∥ṽ∗♯ − ṽ∗
∥∥
1,µ̄

(e)
≥ D∗

F(fθ)−D∗
F(fθ′)− 2BF εapp,V(V,F), (31)

where (a) follows from compromising the maximum with v = ṽ∗♯ ∈ V , (b) from the definition of f̆∗
♯

above, (c) from Lemma 5.2, (d) from ∥fθ∥∞ , ∥fθ′∥∞ ≤ BF and (e) from Lemma 5.3.

Moreover, let

Φ(θ′) := min
π∈Πβ

{
B̄V,Ξ

∥∥∥fθ′ − f̆π
∥∥∥
1,µβ

+ 2(1− γ) ∥ṽ∗ − ṽπ∥1,µ̄

}
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be the intrinsic error of θ′ and fix arbitrary π∗ ∈ Πβ ∩ Π̃∗. Then, K̄∗ + LSP(θ
′) is upper-bounded

with Φ(θ′) up to another error term,

K̄∗ + LSP(θ
′) = K̄∗ − U∗ + U∗ −min

v∈V
K(v, fθ′)

(a)
= K(ṽ∗♯ , f̆

∗
♯ )−K(ṽ∗, f̆π∗

) + U∗ −min
v∈V

K(v, fθ′)

(b)
≤ K(ṽ∗♯ , f̆

∗
♯ )−K(ṽ∗, f̆∗

♯ ) + U∗ −min
v∈V

K(v, fθ′)

(c)
≤ (2 +BF )

∥∥ṽ∗♯ − ṽ∗
∥∥
1,µ̄

+Φ(θ′)

(d)
≤ (2 +BF )εapp,V(V,F) + Φ(θ′), (32)

where (a) follows from Lemma 5.2, (b) from Theorem 5.2, (c) from Lemma C.1 and Lemma C.2 and
(d) from Lemma 5.3.

Subtracting both sides of Eq. (31) from those of Eq. (32), we get

D∗
F(fθ) ≤ LSP(θ)− LSP(θ

′) +D∗
F(fθ′) + Φ(θ′) + (2 + 3BF )εapp,V(V,F).

which, summed with LX(θ) ≤ LX(θ) + ϵest(θ
′) = ϵest(θ)− LSP(θ) + L(θ′) on both sides, yields

D∗
F(fθ) + LX(θ) ≤ ϵest(θ) +D∗

F(fθ′) + LX(θ
′) + Φ(θ′) + (2 + 3BF )εapp,V(V,F). (33)

The remaining task is to choose θ′ ∈ Θ such that D∗
F(fθ′)+LX(θ

′)+Φ(θ′) is nicely bounded. Now,
observe that

D∗
F(fθ′) = Eµ,β [fθ′(s, a) {ṽ∗(s)− q̃∗(s, a)}]

(a)
≤ min

π∈Πβ

{
Eµ,β

[
f̆π,∗(s, a) {ṽ∗(s)− q̃∗(s, a)}

]
+ Eµ,β

[
(fθ′ − f̆π)(s, a) {ṽ∗(s)− q̃∗(s, a)}

]}
(b)
= min

π∈Πβ

{
Ũ∗ − Ũ(π)− Eµ,β

[
(fθ′ − f̆π)(s, a) ξ̃∗(s, a)

]}
(c)
≤ min

π∈Πβ

{
(1− γ) ∥ṽ∗ − ṽπ∥1,p̆∗ +

∥∥∥ξ̃∗∥∥∥
∞

∥∥∥fθ′ − f̆π
∥∥∥
1,µβ

}
(d)
≤ Φ(θ′), (34)

where (a) follows from f̆π,∗ ≥ f̆π (see Eq. (29) for the definition of f̆π,∗), (b) from Lemma F.3, (c)
from Hölder’s inequality and (d) from p̆∗ ≤ 2µ̄ and ∥ξ̃∗∥∞ ≤ B̄V,Ξ. Moreover, for all π ∈ Πβ , we
have

LX(θ
′) = max

ξ∈Ξ
{Eµ,β [fθ(s, a)ξ(s, a)]− Eµ,πθ

[wθ(s)ξ(s, a)]}

(a)
≤ max

ξ∈Ξ
Eµ,β

[
(fθ − f̆π)(s, a)ξ(s, a)

]
+max

ξ∈Ξ
Eµ,π [(w̆

π − wθ)(s)ξ(s, a)]

+ max
ξ∈Ξ
{Eµ,π [wθ(s)ξ(s, a)]− Eµ,πθ

[wθ(s)ξ(s, a)]}

(b)
≤ BΞ

{∥∥∥fθ − f̆π
∥∥∥
1,µβ

+ ∥wθ − w̆π∥1,µ +BW ∥πθ − π∥TV,µ

}
, (35)

where (a) follows from the telescoping and (b) from ∥ξ∥∞ ≤ BΞ for all ξ ∈ Ξ and ∥w̆π − wθ∥1,µ ≤
∥w̆π −wθ∥1,µ since w̆π ≥ 1− γ. Adding both sides of Eqs. (34) and (35) and taking π and θ′ as the
minimizers of Eqs. (12) and (13), respectively, we arrive at

D∗
F(fθ′) + LX(θ

′) + Φ(θ′) ≤ 2Φ(θ′) +BΞϵΘ(π) ≤ 3ϵΘ (36)

where the last inequality follows from Φ(θ′) ≤ ϵΘ (Eq. (12)). The proof is concluded by adding both
sides of Eqs. (30), (33) and (36) and simplifying the error terms with Eq. (16).
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F.3 Extensions of Corollary 6.1

The suboptimality bound established by Corollary 6.1 requires the uniform boundedness of ∥w̃πθ∥∞.
With more careful analysis, however, we can obtain policy suboptimality bounds with milder condi-
tions. We present two of such upper bounds below.

To this end, we introduce two types of local truncated concentrability. Let Π ≡ Π(Θ) := {πθ | θ ∈ Θ}
be the set of all the policy candidates.

Definition F.1. Let C̃ϵ := max{∥w̃π∥∞ | J̃∗ − J̃(π) ≤ ϵ, π ∈ Π} be the ϵ-weakly local truncated
concentrability (ϵ-WLTC) coefficient for ϵ > 0. We also define the limit WLTC coefficient as
C̃0 := limϵ→0+ C̃ϵ.

Definition F.2. Let c̃ϵ := max{∥w̃π∥∞ | max(s,a)∈supp(µπ) {ṽ∗(s)− q̃∗(s, a)} ≤ ϵ, π : S →
∆(A)} be the ϵ-strongly local truncated concentrability (ϵ-SLTC) coefficient for ϵ > 0. We also
define the limit SLTC coefficient as c̃0 := limϵ→0+ c̃ϵ.

Intuitively, both the WLTC and SLTC coefficients bound the norm of w̃π locally for near-optimal
policies π. The difference is the ways they measure the locality: WLTC uses the policy suboptimality
and SLTC uses the maximum action value gap. Note that WLTC dominates SLTC, c̃ϵ ≤ C̃ϵ ≤ C̃∞, if
Π(Θ) covers the entire policy space ∆(A)S . In general, there is no particular order between WLTC
and SLTC and we just have C̃ϵ ≤ C̃∞.

The following lemma is the foundation of our local concentrability results.

Lemma F.4. For any π ∈ Π, we have

J̃∗ − J̃(π) ≤
(
1 +

c̃ϵ0(π)

c̃0

)
ϵ0(π),

where ϵ0(π) :=
√

c̃0Γ(π)/(1− γ).

Proof. Refer to Appendix F.4.

Combining it with Lemma F.1 and discarding the non-asymptotic term for the simplicity, we get the
first bound as the following corollary.

Corollary F.2. For all θ ∈ Θ, we have

J̃∗ − J̃(πθ) ≲ 2

√
c̃0

1− γ
{ϵest(θ) + εapp,Π(V,Θ,Ξ)}, (37)

where a ≲ b means lim supb→0+ a/b ≤ 1.

In words, Eq. (37) allows us to replace the uniform concentrability coefficient C̃∞ with the limit
SLTC coefficient c̃0 at the cost of the slower convergence rate due to the square root.

Moreover, a faster bound can be obtained exploiting the limit WLTC coefficient C̃0 instead of c̃0,
leading to our second bound.

Corollary F.3. For all θ ∈ Θ, we have

J̃∗ − J̃(πθ) ≲
C̃0

1− γ
{ϵest(θ) + εapp,Π(V,Θ,Ξ)} . (38)

Proof. Observe that Corollary F.2 implies ∥w̃πθ∥∞ is bounded with C̃ϵ, where ϵ is taken as the
RHS of Eq. (37). The claim thus follows from Theorem 6.1 with ∥w̃πθ∥∞ ≤ C̃ϵ → C̃0 as ϵest(θ) +
εapp,Π(V,Θ,Ξ)→ 0.

Similarly as Corollary F.2, in comparison to Theorem 6.1, the coefficient of the upper bound is
improved from C̃∞ to C̃0, meaning that asymptotically we only need the weakly local, not uniform,
concentrability.
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F.4 Proof of Lemma F.4

Let us denote the set of the ϵ-strongly near-optimal policies by

Π̃∗
ϵ :=

{
π : S → ∆(A)

∣∣∣ supp(π(s)) ⊂ supp(Ã∗
ϵ (s)), s ∈ supp(µ)

}
, ϵ ≥ 0,

where Ã∗
ϵ (s) := {a ∈ A | ṽ∗(s)− q̃∗(s, a) ≤ ϵ} is the ϵ-optimal action subset for s ∈ S.7 Note that

by definition Π̃∗
0 = Π̃∗ and Π̃∗

ϵ is monotone nondecreasing with respect to ϵ, reaching the set of the
all policies with ϵ ≥ 1/(1− γ). Then, the SLTC coefficient can be written in terms of Π̃∗

ϵ ,

c̃ϵ = max
π∈Π̃∗

ϵ

∥w̃π∥∞ .

Now, to prove Lemma F.4, we show that there exists a strongly optimal policy π̄ ∈ Π̃∗
ϵ that approxi-

mates the target policy π if Γ(π) is small.

Lemma F.5. For all π : S → ∆(A) and ϵ > 0, we have

min
π̄∈Π̃∗

ϵ

∥π − π̄∥TV,µ ≤
2Γ(π)

ϵ
.

Proof. Take π′ ∈ Π̃∗
ϵ as a projection of π onto Π̃∗

ϵ , i.e.,

π′(a|s) = 1{a ∈ Ã∗
ϵ (s)}π(a|s) + c(s)π0(a|s), s ∈ S,

with arbitrary π0 ∈ Π̃∗
ϵ and c(s) := 1−

∑
a∈Ã∗

ϵ (s)
π(a|s). Observe that, by the triangle inequality,

∥π − π′∥TV,µ = Eµ

∑
a

|π(a|s)− π′(a|s)|

≤ Eµ

∑
a

{
(1− 1{a ∈ Ã∗

ϵ (s)})π(a|s) + c(s)π0(a|s)
}

= 2Eµ [c(s)] .

Then, we have

min
π̄∈Π̃∗

ϵ

∥π − π̄∥TV,µ ≤ 2Eµ [c(s)] = 2Eµ,π

[
1
{
a ̸∈ Ã∗

ϵ (s)
}]

.

Now, plugging

1
{
a ̸∈ Ã∗

ϵ (s)
}
= 1 {ṽ∗(s)− q̃∗(s, a) > ϵ} ≤ 1

ϵ
{ṽ∗(s)− q̃∗(s, a)}

on the RHS, we arrive at the desired inequality

min
π̄∈Π̃∗

ϵ

∥π − π̄∥TV,µ ≤
2

ϵ
Eµ,π [{ṽ∗(s)− q̃∗(s, a)}] = 2

ϵ
Γ(π).

As a corollary, we can also bound the difference of their policy values based on the SLTC coefficient.

Corollary F.4. For all π : S → ∆(A) and ϵ > 0, we have

min
π̄∈Π̃∗

ϵ

∣∣∣J̃(π)− J̃(π̄)
∣∣∣ ≤ 2c̃ϵ

1− γ

Γ(π)

ϵ
.

7It is referred to as the strong near-optimality since it implies the near-optimality in the usual sense, i.e.,
J̃∗ − J̃(π) ≤ ϵ for all π ∈ Π̃∗

ϵ .
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Proof. Take arbitrary π̄ ∈ Π̃∗
ϵ and observe that

d̃π(s)− d̃π̄(s) = (1− γ)
{
(I − γT̃ π

∗ )−1 − (I − γT̃ π̄
∗ )−1

}
p0(s)

= (1− γ)(I − γT̃ π
∗ )−1

{
(I − γT̃ π̄

∗ )− (I − γT̃ π
∗ )
}
(I − γT̃ π̄

∗ )−1p0(s)

= γ(1− γ)(I − γT̃ π
∗ )−1

(
T̃ π
∗ − T̃ π̄

∗

)
(I − γT̃ π̄

∗ )−1p0(s)

= γ(I − γT̃ π
∗ )−1T̃∗

(
Pπ
∗ − P π̄

∗
)
d̃π̄(s).

Thus, we have ∥∥w̃π − w̃π̄
∥∥
1,µ

=
∑

s∈supp(µ)

∣∣∣d̃π(s)− d̃π̄(s)
∣∣∣

=
∑

s∈supp(µ)

∣∣∣γ(I − γT̃ π
∗ )−1T̃∗

(
Pπ
∗ − P π̄

∗
)
d̃π̄(s)

∣∣∣
(a)
≤ γ

1− γ

∑
(s,a)∈supp(µβ)

∣∣∣(Pπ
∗ − P π̄

∗
)
d̃π̄(s, a)

∣∣∣
=

γ

1− γ
Eµ

 d̃π̄(s)
µ(s)

∑
a∈supp(β(s))

|π(a|s)− π̄(a|s)|


(b)
≤ γc̃ϵ

1− γ
Eµ

[∑
a

|π(a|s)− π̄(a|s)|

]

=
γc̃ϵ
1− γ

∥π − π̄∥TV,µ , (39)

where (a) follows from the fact T̃ π
∗ and T̃∗ can be identified as non-expansive mappings of types

L1(supp(µ)) → L1(supp(µ)) and L1(supp(µβ)) → L1(supp(µ)), respectively, and (b) follows
from π̄ ∈ Π̃∗

ϵ . Finally, observe that∣∣∣J̃(π)− J̃(π̄)
∣∣∣ = ∣∣Eµ

[
(w̃π r̃π − w̃π̄ r̃π̄)(s)

]∣∣
(a)
≤ Eµ

[∣∣(w̃π − w̃π̄)r̃π
∣∣ (s) + ∣∣w̃π̄(r̃π − r̃π̄)

∣∣ (s)]
(b)
≤
∥∥w̃π − w̃π̄

∥∥
µ,1

+ c̃ϵ ∥π − π̄∥TV,µ

(c)
≤ c̃ϵ

1− γ
∥π − π̄∥TV,µ ,

where (a) follows from the triangle inequality, (b) from the fact |r̃(s, a)| ≤ 1 and (c) from Eq. (39).
The proof is concluded by applying Lemma F.5 on the RHS.

We now arrive at the following corollary, which immediately implies Lemma F.4 as a special case
with the substitution ϵ = ϵ0(π).
Corollary F.5. For all ϵ > 0, we have

J̃∗ − J̃(π) ≤ ϵ+
2c̃ϵ
1− γ

Γ(π)

ϵ
.

Proof. By Lemma F.3, we have

J̃∗ − J̃(π̄) = Eµ,π [w̃
π(s) {ṽ∗(s)− q̃∗(s, a)}] ≤ ϵEµ [w̃

π(s)] ≤ ϵ

for all π̄ ∈ Π̃∗
ϵ . Thus, decomposing the suboptimality as

J̃∗ − J̃(π̄) ≤ J̃∗ − J̃(π̄) +
∣∣∣J̃(π)− J̃(π̄)

∣∣∣
and applying Corollary F.4 results in the desired result.
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F.5 Proof of Corollary 6.2

Proof. The celebrated uniform convergence theorem (Lemma B.1) with the boundedness∣∣∣L̂z(θ; v, ξ)
∣∣∣ ≤ Ball implies that, for all δ ∈ (0, 1),

max
θ∈Θ,v∈V,ξ∈Ξ

∣∣∣L̂(θ; v, ξ)− E [L(θ; v, ξ)]
∣∣∣ ≤ 2Rn(H) +Ball

√
ln(2/δ)

2n
(40)

with probability 1 − δ. Now, by definition, ϵest(θ) is uniformly approximated with ϵ̂est(θ) up to as
twice as the statistical error given by Eq. (40). Plugging this into Eq. (18), we obtain the desired
bound.
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• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA]
Justification: There is no immediate societal impact to be considered of the present work
since the results are purely theoretical.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: No dataset or model is disclosed.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [NA]

Justification: The paper does not use existing assets.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: The paper does not release new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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